Measuring Soil Properties and Processes with Thermo-TDR Sensors

Bob Horton

Iowa State University

Soil heat and water dynamics

• Impact biological, chemical, and physical, processes

 Modeling coupled heat and water dynamics is difficult and requires many 'difficult to measure' parameters

 Measuring in situ coupled heat and water dynamics has improved recently

DOY 2008

Coupled heat and water movement

Although models are useful, measurements are essential.

TDR: Measuring Soil Water Content

 θ = -5.3 x 10⁻² + 2.92 x 10⁻² K_a - 5.5 x 10⁻⁴ K_a^2 + 4.3x10⁻⁶ K_a^3

Topp et al. (1980)

Water Content

Accuracy: 0.02-0.03 m³ m⁻³

Heat Pulse Method

Campbell et al. (1991), Kluitenberg et al. (1993), Bristow et al. (1994)

Thermal Properties

Thermo-TDR Probe

Ren, Noborio, and Horton (1999)

Soil Physical Parameters from Thermo-TDR

- ✓ Soil temperature and water content
- ✓ Soil thermal properties
- Bulk density (ρ_b):

Soil Bulk Density: Field Dynamics

Date

Liu, Ren, and Horton, SSSAJ, 2014

Soil Heat Flux

Gradient Method: $G = -\lambda (dT/dz)$

Cobos and Baker, 2003; Ochsner et al., 2006

Soil Water Evaporation from a Sensible Heat Balance

$$C\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) - \rho_w L \frac{\partial q_v}{\partial z} \qquad (H_1 - H_2) - \Delta S = LE$$

Heitman, Horton, Sauer, and DeSutter (2008)

Soil Water Evaporation with Heat-Pulse Sensor

Soil heat flux: $H = -\lambda (dT/dz)$

Change in soil heat storage: $\Delta S = C (\Delta Z) (dT/dt)$

$$LE = (H_1 - H_2) - \Delta S$$

Heat pulse sensor vs. weighing lysimeter

Soil Water Flow from heat pulse measurements

Ren, Kluitenberg, and Horton, SSSAJ, 2000

Water Flux Density Relates to the Ratio of T

A relationship between water flux and temperature ratio is,

$$J = \frac{\lambda}{x_0 C_w} \ln\left(\frac{T_d}{T_u}\right)$$

Soil water flux density can be calculated using heat pulse measurements.

Wang, Ochsner, and Horton, WRR, 2002

Verifying Water Flux Density

Heat-pulse method is able to measure saturated water flux as low as 10⁻⁶ m s⁻¹.

Soil Sci. Soc. Am. J. 64: 522-560 Water Resour. Res. 38(6):1091 Soil Sci. Soc. Am. J.70: 711-717 Soil Sci. Soc. Am. J.73: 1912-1920 Water Resour. Res. 38(1):1006 Soil Sci. Soc. Am. J. 69:757–765 Soil Sci. Soc. Am. J. 71:53–55

Relationship between K and θ

Field measured WRC varied with soil depth and bulk density.

Ice Content in Partially Frozen Soil

Agreement of SHB-based and SHAW-based ice content

Kojima et al., 2013

Thermo-TDR Sensor

Temperature

Water content

Bulk density

Soil heat flux

Soil water evaporation

Soil water flux

Soil ice content

National Science Foundation

Army Research Office